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In this paper, the low-Reynolds number (Re = 80) flow around a row of nine square
cylinders placed normal to the oncoming flow is investigated using the lattice-
Boltzmann method. The effects of the cylinder spacing on the flow are studied
for spacing to diameter ratios of 0.3 to 12. No significant interaction between the
wakes is observed with spacings greater than six times the diameter. At smaller
spacings, the flow regimes as revealed by vorticity field and drag coefficient signal are:
synchronized, quasi-periodic and chaotic. These regimes are shown to result from the
interaction between primary (vortex shedding) and secondary (cylinder interaction)
frequencies; the strength of the latter frequency in turn depends on the cylinder
spacing. The secondary frequency is also related to transition between narrow and
wide wakes behind a cylinder.

The mean drag coefficient and Strouhal number are found to increase rapidly with
a decrease in spacing; correlations of these parameters with spacing are proposed.
The Strouhal number based on gap velocity becomes approximately constant for a
large range of spacings, highlighting the significance of gap velocity for this class
of flows. It is also possible to analyse the vortex pattern in the synchronized and
quasi-periodic regimes with the help of vorticity dynamics. These results, most of
which have been obtained for the first time, are of fundamental significance.

1. Introduction
The flow downstream of a row of cylinders placed normal to the flow has many

practical engineering applications. A row of cylinders is often used to screen strong
and sudden winds in order to change them to weak and gentle ones (Mizushima &
Takemoto 1996). Cascades of cylinders, with a narrow spacing between the cylinders,
are often used in wind tunnels to obtain a uniform velocity distribution; but the
velocity distribution is prevented from becoming uniform when cylinders are put
too close to each other (Bradshaw 1965). The flow past a row of cylinders is of
interest in situations such as turning vanes in duct elbows, multi-slotted airfoils, and
flow around closely spaced electrical power poles (Cheng & Moretti 1988). The flow
around multiple cylinders is a spatially developing flow problem, where several rich
phenomena are observed.

In this paper, we numerically study flow around a row of square cylinders placed
side-by-side, at low Reynolds number. Square cylinders were chosen for the present
study because they can be described on a Cartesian grid with a higher accuracy as
compared to circular cylinders. The cylinders are assumed to be of equal size (d) and
the distance between two consecutive cylinders (s) is the same. For a row of cylinders,
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the important parameters are non-dimensional spacing, s/d and Reynolds number,
Re ( = U0d/ν where U0 is the uniform inlet velocity and ν is the kinematic viscosity of
the fluid). A study with a row of square cylinders at low Reynolds numbers does not
seem to have been undertaken before. However, some studies on two to five cylinders
and a row of nine or more circular cylinders at high Reynolds numbers are available.
Some difference in results between circular and square cylinders can be expected
because unlike the circular cylinder, the square cylinders tend to fix the separation
point, causing differences in the critical regimes. The separation mechanism and the
consequent dependence of the shedding frequency and the aerodynamic forces as a
function of Reynolds number, also differs significantly for the two geometries. In the
following sections, we present a brief summary of these earlier works. The relevant
studies for two (and more) cylinders are used throughout the paper for comparison
with the simulation results.

1.1. Literature survey for two-five cylinders

Bearman & Wadcock (1973) studied quasi-stable and flopping for two circular
cylinders as a function of cylinder spacings, at a Reynolds number of 2.5×104. Quasi-
stable behaviour is the behaviour observed downstream of the cylinders with different
values of drag coefficient Cd . A large-amplitude flow perturbation can cause the Cd

value to change, but the Cd remains at the new value until another large perturbation
is applied. On the other hand, flopping is the behaviour where Cd alternates over
time between relatively high and low values, even when no perturbation is applied to
the flow field. Bearman & Wadcock (1973) showed that when s/d � 4.0, the cylinder
wakes do not interact until after a significant distance downstream. The cylinders
must be nearly touching for a single wake to form. Kim & Durbin (1988) worked
with s/d = 0.75 and Reynolds number between 2200 and 6200. Only flopping was
observed in their experiments. Le Gal et al. (1990) performed experiments using two
cylinders with s/d � 6.5 and Re = 110 and found wake interaction up to a separation
ratio of about 4.5. Probably because of the low Reynolds number, flopping was
difficult to observe in their study. However, they did observe quasi-stable behaviour
and performed a flow-visualization study which was in agreement with the large-
wake and small-wake model presented later. Sumner et al. (1999) used particle image
velocimetry to examine the vorticity field behind the cylinders. Several numerical
studies have also been carried out for circular cylinders (Slaouti & Stansby 1992;
Farrant, Tan & Price 2001; Meneghini et al. 2001; Kang 2003). Most of these studies
which present the lift and drag coefficients as a function of time, were undertaken
either to verify the various numerical schemes that were used, or to extend the
available experimental results.

Zhou et al. (2000) presented a detailed phase-average-based analysis of hot-wire
data in an effort to educe the vortices in the flow for two and three cylinders in the flow.
They have also systematically analysed two of the ensuing flow regimes. Guillaume &
LaRue (1999) investigated the different flow regimes for different spacings for two,
three and four cylinders placed normal to the flow. They report the presence of
multiple peaks in the power spectra corresponding to different values of the Strouhal
number. They also observed anti-phase flopping behind two-cylinder-row and quasi-
stable behaviour behind three and four cylinders.

Ishigai & Nishikawa (1975) experimentally investigated the flow downstream of five
side-by-side circular cylinders for Re = 4000–33 000, along with other configurations
not of interest here. They used the schlieren technique with special attention to
dependence of the vortex-formation region and the Coanda effect on the gap flow.
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The Strouhal number almost doubled when the spacing was reduced from s/d = 1.5
to 0.2.

All the above investigations were for circular cylinders. Kolar, Lyn & Rodi (1997)
performed measurements on a pair of square cylinders using two-component laser-
Doppler velocimetry at Re =23 100 and s/d = 2. They performed phase-averaging
and examined the strengths of the vortices both near the gap and in the outer shear
layers. Valencia & Cid (2002) and Agrawal, Djenidi & Antonia (2006) performed a
numerical study of the flow around a pair of square cylinders. Agrawal et al. (2006)
showed the presence of synchronized and chaotic regimes with square cylinders at
Re =73, in agreement with the well-known results for circular cylinders. Their study
shows in-phase shedding to be the predominant mode in the synchronized regime,
whereas application of the linear stochastic estimate technique showed that both
in-phase and anti-phase configurations occur with almost equal probabilities in the
flip-flop regime.

1.2. Literature survey for a row of cylinders

Cheng & Moretti (1988) presented flow-visualization images and velocity
measurements of the flow field downstream of a row of nine tubes at s/d = 0.3
and Re =2500. Bradshaw (1965) performed experiments on a row of nine circular
cylinders to obtain the stability limit for the merging of vortices at a Reynolds
number of 1500. Chauve & Le Gal (1992) performed flow visualization on a row
of 16 cylinders at s/d = 3 and Re = 80. They report that at certain instants, certains
wakes stop oscillating (shedding vortices); these events appear erratically in time and
can affect any wake. Analysis of the recorded images revealed spatio-temporal chaos,
which was consistent with their simulations of the generalized Ginzburg–Landau
equation. The above analysis was extended to other spacings (s/d = 0.5 and 2) by
Le Gal et al. (1996).

Mizushima & Takemoto (1996) performed flow visualization of the pattern
downstream of a row of square cylinders. For 1.2 � s/d � 2.6 and 80 � Re � 320,
their result shows that at specific Reynolds number and s/d combinations, both
flopping and bi-stable flip-flop behaviour can exist downstream of the cylinders.
Mizushima & Akinaga (2003) investigated interactions of wakes in flow past a row
of square and circular bars, placed across uniform flow by numerical simulations and
experiments. Their result shows that at s/d =1.0, in-phase vortex shedding occurs
between cylinders whereas at s/d = 3.0, anti-phase shedding was observed.

The literature survey shows that although there are a number of studies for single
and a pair of cylinders, there is limited information for flow around a larger number
of cylinders. It is also noted that there is limited quantitative information on a row of
cylinders in the available papers, and no sincere effort to document and understand
the different flow regimes that can exist has been made. An infinite row of cylinders
is the other extreme of a single-cylinder case, and the results are expected to be of
fundamental value, besides being important for several applications mentioned above.
The present work attempts to fill some of these voids. Specifically, we focus on the
low-Reynolds-number end for a row of square cylinders. Simulations are performed
for the entire range of spacings (s/d = 0.3–12), at a fixed Reynolds number of 80.
The resulting vorticity fields along with the time series for drag and lift coefficients
are examined, with the aim of defining and explaining the resulting flow patterns. We
also explain the origin of a new (cylinder interaction) frequency, which is clearly seen
from the data and substantially affects the behaviour.
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2. Computational details
A brief description of computational technique and boundary conditions employed,

along with validation of the code and data-reduction techniques is provided in
this section. Although the lattice-Boltzmann method (LBM) has been used in the
present study, an alternative computational technique (such as finite-volume method)
could have been used. Some advantages of using LBM as compared to conventional
techniques are ease of placing cylinders in the flow and parallelization of the code. A
parallel code has, however, not been used in the present computations.

2.1. Lattice Boltzmann method

In the LBM approach, we solve the kinetic equation for the particle velocity
distribution function f . A D2Q9 scheme (where D refers to space dimensions, and Q
to the number of particles at a computational node) is adopted for this work. Here,
each node comprises eight moving particles and a rest particle. The density evolution
equation is given by

fi(x + ei , t + 1) = fi(x, t) − fi(x, t) − f
eq
i (x, t)

τ
, (1)

where fi is the instantaneous particle density at a link, f
eq
i is the corresponding

equilibrium density, x is the spatial position vector, ei are the direction vectors, t is
time, and τ is the relaxation time. The equilibrium density function is computed as

f
eq
i = ρwi

(
1 + 3(ei · u) + 9

2
(ei · u)2 − 3

2
u2

)
, (2)

where u is the instantaneous velocity at the node, ρ is the fluid density, and wi are
the corresponding weights (wi = 4/9 for rest particle, 1/9 for axis particles and 1/36
for diagonal particles). The relaxation time is related to the kinematic viscosity of the
fluid via the relation ν = (2τ − 1)/6.

Equation (1) is solved through the two steps of collision (which uses a BGK
collision operator; Chen & Doolen 1998) and propagation, i.e. (3) and (4) given
below. During the collision step, the particles readjust their states while the overall
mass and momentum at the computational node is conserved. In the subsequent step
(propagation), the particles move to the nearest neighbours along their respective
velocity directions. Mathematically, these steps can be expressed as (collision)

f new
i (x, t) = fi(x, t) − fi(x, t) − f

eq
i (x, t)

τ
, (3)

where f new
i is an intermediate function, and (propagation)

fi(x + ei , t + 1) = f new
i (x, t). (4)

The boundary conditions are applied after the propagation step equation (4), and the
entire process is solved iteratively.

The density (ρ), velocity (u) and pressure (p) at a node are calculated from the
following equations:

ρ =
∑

i

fi, ρu =
∑

i

fiei , p = ρc2, (5)

where c is the speed of sound ( = 1/
√

3 in our scheme). It has been shown
mathematically that the solution of (1) using the above two steps is equivalent
to solving the Navier–Stokes equations provided that the underlying lattice has a
sufficient amount of symmetry (Frisch, Hasslacher Pomeau 1986; Succi 2001).
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Figure 1. The computational domain. The size of the computational domain (Lx,Ly) is
(27d ,9(d + s)). The nine cylinders present have been marked as C1 to C9, starting from the
bottom of the computational domain. Note that the origin of the coordinate system has been
fixed at the lower-downstream vertex of the bottom-most cylinder.

2.2. Computational domain, boundary and initial conditions

The flow configuration is shown in figure 1. Nine fixed two-dimensional square
cylinders with side d , which is also the characteristic length scale, are exposed to a
constant and uniform velocity U0. The length of the computational domain is taken to
be Lx = Lu + d + Ld , where Lu is the upstream length and Ld the downstream length
from the origin. Mizushima & Takemoto (1996) have taken Lu = 4.5d and Ld = 15.5d

in their numerical simulations for a row of square cylinders. The dimensions of the
computational domain were checked by them by requiring that the length of the
twin vortices attached to the square bars does not change significantly even if the
dimensions are increased. Our preliminary tests with Lu = 7d and Ld = 19d confirmed
that the cylinders are properly placed with respect to the edges of the computational
domain. Therefore, these latter values are employed in the simulations for most of
the cases presented here. The number of points along the lateral direction is Ly

( = 9(d + s)). Note that the underlying grid structure is uniform and square. It is
important to realize that nine cylinders are actually present in the computational
domain, unlike some previous studies where the flow around a single cylinder was
computed, and by employing either symmetric or periodic boundary condition the
results were extended to other cylinders.

A periodic boundary condition has been applied on the lateral sides of the
computational domain for extending the results to an infinite number of cylinders
(figure 1). The popular approach of using the bounce-back scheme has been employed
to simulate the no-slip condition at the fluid–solid interfaces (see Agrawal & Agrawal
2006 for details about its implementation). A uniform velocity with negligible
compressibility effects (U0/c =0.0866) was prescribed at the inlet. A convective
boundary condition has been used at the outlet, which allows an unconstrained
movement of the fluid away from the computational domain. The simulation starts
with the fluid initially at rest.
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Figure 2. Comparison of (a) Strouhal number, and (b) coefficient of drag as a function of
Reynolds number for a single cylinder, against available experimental and numerical data.
The experimental data of Norberg have been taken from Sohankar, Norberg & Davidson
(1997).

(a) (b)

Figure 3. Comparison of vortex shedding from a row of cylinders (s/d = 2.0 and Re = 200).
(a) Present computations, and (b) experiments of Kobayashi (1984) (taken from Mizushima &
Akinaga 2003).

2.3. Validation of the code and adequacy of the grid

This code for the large-cylinder case is essentially an extension of two-cylinder code
used in Agrawal et al. (2006). The code with minimal modifications has also been used
elsewhere (e.g. Burattini et al. 2006). The code was validated by comparing results for
a single square cylinder against published data, as mentioned in Agrawal et al. (2006).
Additional validation for a single square cylinder in a uniform flow is provided in
figure 2. Figure 3 compares the flow pattern for a row of cylinders as computed from
the present code against the experimental result of Kobayashi (1984). Although the
geometry of the cylinders is different (because of the paucity of results for square
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s/d d Lx × Ly

0.3 50 1350 × 585
0.4 40 1080 × 504
1.0 20 540 × 360
1.8 10 270 × 252
2.0 20 540 × 540
2.2 20 540 × 576
2.5 10 270 × 315
3.0 16 432 × 576
4.0 16 432 × 720
5.0 10 270 × 540
6.0 10 270 × 630
8.0 10 270 × 810

10.0 10 270 × 990
12.0 10 270 × 1170

Table 1. The number of points representing one cylinder dimension and the total
computational domain employed at different spacings.

s/d Cd at d =10 Cd at higher resolution

1.0 6.147 (5.2 %) 6.485 at d =20
2.0 3.287 (4.3 %) 3.152 at d =20
2.2 3.023 (5.6 %) 2.863 at d =20
4.0 2.073 (7.4 %) 1.931 at d =16

Table 2. Effect of spatial resolution on the mean coefficient of drag (Cd ) at Re =80. The
figure in parentheses shows the difference between values at lower and higher resolution grid
(in percentage), taking the higher grid-point value as the base. Note that for all these cases
the higher of the two resolutions is employed in the computations.

cylinders at low Reynolds numbers), the result agrees reasonably well. These results
establish confidence in predictions from the present code.

The grid-size and solution employed in the simulations have been tabulated for
different cases in table 1. The resolution is chosen such that both flow around the
cylinder and in the gap are best resolved, keeping the constraints of computational
resources and simulations for long time in mind. The spatial adequacy was tested by
varying the number of grid points representing a cylinder and comparing values of
Cd for different resolutions (see table 2). The difference is within 7 %, implying that
the computations on the higher resolution are grid independent with respect to the
chosen parameter for all spacings.

Earlier studies (e.g. Saha, Muralidhar & Biswas 2000; Ravoux, Nadim & Haj-
Hariri 2003) show that satisfactory results have been achieved with a comparable
spatial resolution. The results of Breuer et al. (2000) indicated that a higher resolution
is required only at larger Reynolds numbers. The low Reynolds number (Re = 80)
employed in the simulations further ensures that the flow is two-dimensional (as shown
by Saha, Biswas & Muralidhar 2003, three-dimensional effects become important
only around Re =175 for a single square cylinder; Chauve & Le Gal 1992 also chose
Re =80 in their experiments for the same reason). However, no explicit test to check
for spanwise flow homogeneity was performed.
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2.4. Data reduction

From the primary code, results are obtained for velocity and pressure field for the
entire computational domain. Additional quantities such as drag and lift coefficients,
vorticity and Strouhal number are computed from velocity and pressure fields for
further analysis. The lift (Cl) and drag (Cd) coefficients are calculated in the usual
manner:

Cl =
Fl

1
2
AρU 2

0

, Cd =
Fd

1
2
AρU 2

0

, (6)

where Fl and Fd are the lift and drag forces, respectively, and A is the frontal area.
Note that these forces comprise both pressure force and viscous drag components.
(See Kumar 2006, for details about computation of these forces).

Flow patterns obtained in different regimes have been analysed on the basis of
vortex interaction (Kundu 1990). The first step was to compute the vorticity field; the
vortex centre is found next, and subsequently its shape, strength (or circulation, Γ )
and rotational sense are calculated. Then assuming vortices to be two-dimensional
(perpendicular to the paper), the effect of other vortices on the movement of a given
vortex is found. The velocity induced owing to a vortex v at a distance r from the
vortex centre is (Kundu 1990):

v =
Γ

2πr
eθ , (7)

where, Γ is calculated using (8) below, and eθ is a unit vector. The direction of the
induced velocity (eθ ) is perpendicular to the line joining the vortex centre to the point
of interest, and depends on the rotational sense of the vortex.

The centre of a vortex in the flow is located by finding the local maxima in the
vorticity field. The maxima is identified by comparing the vorticity at every point to
its 24 neighbours. Some noise (spurious centres) may, however, remain; most of these
are eliminated by thresholding (the vortices with strengths less than half of the mean
strength of all detected vortices are removed). Benchmarking of centre identification
is done by matching the vortex centres to centres found in streamlines and velocity
vector plots by overlapping the three (Kumar 2006). Vortex shape is computed by
finding the region around the identified vortex-centre where vorticity first becomes
less than 5 % of the vorticity at the centre of that vortex. The basis of choosing
5% as the cutoff vorticity value is related to the strength of the vortex. The vortex
strength is calculated as

Γ =

∮
A

ω · dA, (8)

where ω is vorticity, and A is the area with vorticity greater than or equal to 0.05 times
the peak vorticity. Integration is also done over the area with vorticity greater than
or equal to 0.10 times the peak vorticity; the difference in the resultant strength is
less than 3 % with respect to the 0.05 criteria. Hence, it was concluded that including
regions with greater than or equal to 0.05 times peak vorticity for the strength
calculation is sufficient to capture the entire vortex. The educed shape is compared
with vorticity contours to establish confidence in the computed vortex shape. Figure 4
shows that the present algorithm faithfully reproduces the shape of the vortices.

2.5. Determination of the minimum number of cylinders

In this section, we examine the mininum number of cylinders required to simulate a
row. Preliminary computations are done for a given spacing (s/d =4.0) and Reynolds
number (Re = 80), while the number of cylinders in the computational domain is
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ncyl Cd

4 1.705
7 1.915
8 1.910
9 1.931

10 1.916

Table 3. Comparison of mean coefficient of drag from row of four, seven, eight, nine and ten
cylinders (s/d = 4.0, Re = 80). ncyl stands for number of cylinders present in the computational
domain.
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Figure 4. Verification of the vortex centre and shape as determined by the detection algorithm
(s/d = 3.0, Re = 80). (a) The vorticity contour plot overlapped with the vortex-centres detected,
and (b) the vortex shape plot as determined by our algorithm.

varied (4, 7, 8, 9 and 10). Table 3 shows that the mean drag coefficient is almost
invariant when 7 or more cylinders are present in the flow. Because the same results
are obtained with 7 to 10 cylinders, the number of cylinders can be arbitrarily chosen
and is fixed to 9 for further computations. This number appears large enough to
simulate a row of infinite cylinders.

3. Flow patterns and time-signal analysis
Simulations are first done at a spacing of s/d = 12 and the spacing is reduced

successively. The results for s/d =12, 10 and 8 are similar and only a few notable
observations are made. For these spacings, almost no interaction occurs between the
flow behind adjoining cylinders. This is deduced, for example, by examining the width
of the wake and mean and r.m.s. velocity fields (not shown). However, the only way
to confirm it is by starting the simulation with different phase lags in vortex shedding
from the cylinders; for no interaction, the phase lag would remain invariant with time
(P. Burattini, personal communication, 2004). However, this was not done because
it is tedious and the same result can be obtained by examining the mean Cd and
St , as discussed in § 4. Because of insignificant interaction between the wakes, little
investigation is done at those separation ratios.
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Figure 5. Vortex shedding from cylinders in the synchronized regime for (a) s/d =6.0, and
(b) s/d = 5.0 (Re = 80). The location of the cylinders is marked by a black square with a white
outline.

When s/d � 6.0, the wakes behind the cylinders interact in a complicated manner,
resulting in a variety of flow patterns. We follow the flow pattern over several vortex-
shedding cycles before making conclusions about them. All the results presented
below are after the initial (numerical) transients have died out.

3.1. Synchronized flow (4.0 <s/d � 6.0)

For configurations with s/d =5.0, 6.0 vortices shed from any cylinder have a constant
frequency and a definite phase relationship with vortices shedding from other
cylinders. For s/d =6.0 (figure 5a), shedding is almost in-phase because vortices
of the same colour corresponding to shedding from consecutive cylinders are at
approximately the same streamwise location; a closer look reveals a phase lag of 30o.
In this case, the vortices remain distinct throughout the computational domain, unlike
some other regimes presented later. This is probably because of weak interactions
owing to large spacing between the cylinders.

For s/d =5.0, the vortices are shed roughly in anti-phase mode from consecutive
cylinders because, black (white) vortices shedding from top (bottom) half of cylinder
and white (black) vortices shedding from bottom (top) half of cylinder just above
(below) previous cylinder are approximately at the same x/d (figure 5b). Because the
above-mentioned vortices are not at exactly the same x/d , the phase lag differs from
180o, as summarized in § 4. For the anti-phase mode, similar to the in-phase mode,
there is little movement of fluid across the gap centreline, and the wakes develop
without significant lateral spread. Similar flow configurations have been reported by
Williamson (1985) for two circular cylinders at s/d = 3 and Re =100. Williamson
further noted that the vortex configuration is ‘stable’, i.e. the configuration keeps
its form for a large downstream distance. (While comparing with the two-cylinder
result, we can see that a given flow regime appears at a larger spacing with a row of
cylinders.)

The observations about in-phase and anti-phase are supported by the time series
for lift coefficient Cl of any two adjoining cylinders. Figure 6 for s/d = 5.0 shows that
both lift and drag coefficients are sinusoidal in shape. Whereas the amplitude of Cl

is constant (with a zero mean), the amplitude of Cd alternates between 0.02 and 0.03
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Figure 6. Signal of lift and drag coefficients for s/d = 5.0, Re =80: (a) Cl1, Cl2 versus time,
and (b) Cd1, Cd2 versus time. Note that the subscripts ‘1’ and ‘2’ refer to the cylinder number,
and the time on the abscissa has been normalized by the corresponding vortex shedding period.
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Figure 7. Vortex shedding from cylinders for (a) s/d = 4.0 and (b) s/d =3.0 (Re = 80).
The location of the cylinders is marked by a black square with a white outline.

for successive cycles with 1.920 as the mean. The frequency of Cl is half of Cd which
is consistent with observations in a single cylinder, and the phase difference between
Cl1 and Cl2 is about 200o. The drag coefficents are approximately in-phase, which is
consistent with the observation that the same event which leads to an extremum in
lift is responsible for a maximum in drag.

3.2. Quasi-periodic flow-I (3.0 � s/d � 4.0)

For both s/d = 4.0 and 3.0, the vortices are again clearly apparent (figure 7); however,
there is some evidence of merging of vortices in s/d = 3.0 at further downstream
locations (x/d � 7). The vortex shedding from a cylinder appears to have a definite
phase relationship with shedding from any other cylinder. However, a closer look
reveals that, the time period of consecutive sheddings from a cylinder is not constant,
as discussed below.

The time signal for lift and drag coefficients between two consecutive cylinders have
been plotted in figure 8. The Cd signal (figure 8b, d) does not resemble the simple
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Figure 8. Signal of lift and drag coefficients for s/d = 4.0, 3.0 and Re = 80. (a) Cl1, Cl2 versus
time for s/d = 4.0, (b) Cd1, Cd2 versus time for s/d =4.0, (c) Cl1, Cl2 versus time for s/d = 3.0,
and (d) Cd1, Cd2 versus time for s/d =3.0. Note that the time on the abscissa has been
normalized by the corresponding average shedding period.

sinusoidal variation of the Cl or Cd signal for a single cylinder, or of figure 6, rather, it
shows a modulated sine with a flat lower half. The modulation (secondary) frequency
spans over 17 and 21 vortex-shedding (primary) cycles, respectively. Similarly, there
is a modulation frequency in the Cl signal (figure 8a, c) These two frequencies lead
to the presence of multiple peaks in the power spectra of the drag coefficient signal,
corresponding to different values of Strouhal number (figure 9 for s/d = 4.0).

Based on the periodicity of lift coefficient signals, the peak at a Strouhal number
of 0.175 is associated with a shedding frequency at s/d = 4.0. Since the wakes formed
behind the cylinder are symmetric about the cylinder centreline, the periodicity of
the drag coefficients is half of the shedding period, and a peak of larger magnitude
is observed at St = 0.35. The peaks (not seen) at a Strouhal number of 0.53, 0.7 and
0.88 are believed to be harmonics of the peak at 0.175 (being three, four and five
times this number). The peak at a Strouhal number of 0.01 in the power spectrum
corresponds to secondary frequency, i.e. the secondary period is about 17 times the
shedding period. Again, the peaks at Strouhal numbers of 0.02 and 0.03 are harmonics
of the secondary frequency. The remaining peaks are linear combinations of primary
and secondary frequencies.
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s/d Number of time iterations for one primary period

1840, 1840, 1820, 1810, 1790, 1800, 1790,
4.0 1810, 1810, 1830, 1830, 1840, 1850, 1860,

1860, 1860, 1860

1640, 1840, 1700, 1590, 1610, 1600, 1600,
3.0 1600, 1610, 1580, 1610, 1610, 1620, 1640,

1730, 1690, 1700, 1670, 1690, 1730, 1720

Table 4. Sequence of primary periods encompassed in a secondary cycle for different
spacings. (Note that 1830 time iterations correspond to a Strouhal number of 0.175.)
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Figure 9. Power spectra of drag coefficient signal, for a nine-cylinder row at s/d =4.0 and
Re = 80. Power is in arbitrary units.

An examination of the time series for Cd reveals that the secondary time period
is constant (with period = 31 100 time iterations) for each cylinder. Within one
secondary period, the primary periods have slightly different values (up to 4 %
variation for s/d = 4.0, see table 4); however, it was verified that every secondary
period for each cylinder has the same sequence of primary cycles. The sequence of
primary periods is presented in table 4. For s/d =3.0, the secondary time period is
again constant across secondary cycles and for each cylinder. Here, each secondary
cycle comprises 21 primary cycles with a total of 34 780 time iterations. The sequence
of primary periods is also presented in table 4. Note that within one secondary period,
the primary period has different values and the variation is more here (10 %) than for
s/d =4.0. The number of primary cycles in a secondary cycle is therefore dependant
on s/d; there is, however, no reason to believe that this number should always be
an integer. It can be speculated that transition to the quasi-periodic-II regime occurs
when an irrational number of primary cycles are encompassed in a secondary cycle.

Chauve & Le Gal (1992) mentions that a difference of about 15 % can exist in
the frequencies of a row of circular cylinders at s/d = 3, Re = 80. They also found a
modulation in the amplitude with a period larger than their sample size (which was
relatively small) and a phase shift of 180o. The results from the present simulations
compare favourably with their findings.
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Figure 10. Vortex shedding from cylinders for (a) s/d =2.2, and (b) s/d = 2.0 (Re = 80). The
location of the cylinders is marked by a black square with a white outline.

3.3. Quasi-periodic flow-II (1.0 < s/d < 3.0)

Figure 10 with s/d = 2.2 and 2.0 reveals that while the vortices immediately
downstream of the cylinders are clearly apparent, those further downstream have
merged. The downstream distance around which this merging happens (x/d ≈ 5) is
smaller than in the previous regime; the vortices also tend to lose their identities
completely upon merging in the present regime unlike the quasi-periodic-I regime.
The instantaneous vorticity contours further reveal that the shedding is neither in
in-phase nor in anti-phase. For example, in figure 10(a) cylinders C3 and C4, and
cylinders C5 and C6 are shedding in in-phase while cylinders C4 and C5 are shedding
in anti-phase. However, the time series for lift and drag coefficients does not reveal a
predominance of either of these two modes (figure 11). A linear stochastic estimate
for two cylinders with s/d = 0.7 and Re = 73 revealed the presence of both in-phase
and anti-phase shedding (Agrawal et al. 2006); however, it is difficult to discern these
underlying modes without the use of special data-processing techniques.

The drag coefficient shows a more chaotic behaviour than the signal for lift
coefficient (figure 11). This shows that the dynamics of lift and drag coefficients become
decoupled for a square cylinder. Further, the period of vortex shedding from a given
cylinder as deduced from the Cd signal, is not constant. With s/d = 4.0 (figure 8b), the
variations in Cd due to secondary and primary cycles are 0.33 and between 0.04 and
0.16, respectively. Similarly in the Cd signal for s/d = 2.2 (figure 11b), the large-scale
and small-scale variations are 0.80 and 0.02–0.44, respectively, which can be attributed
to secondary and primary frequencies respectively. The corresponding numbers for
s/d = 2.0 (Fig. 11d) are 0.96 and 0.01–0.39. Note the increase in amplitude of secondary
frequency with a decrease in spacing. However, unlike the previous regime, in the
present regime, the period of secondary cycles is not constant. These series, however,
suggest that the consecutive cylinders are roughly in anti-phase with respect to the
secondary frequency, meaning that (as discussed later), when a wide wake is formed
behind one cylinder, a narrow wake is formed behind the adjoining cylinders, and
vice versa.
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Figure 11. (a) Signal of lift and drag coefficients for s/d =2.2, 2.0 and Re = 80. Cl1, Cl2

versus time for s/d = 2.2, (b) Cd1, Cd2 versus time for s/d = 2.2, (c) Cl1, Cl2 versus time for
s/d = 2.0, and (d) Cd1, Cd2 versus time for s/d =2.0. Note that the time on the abscissa has
been normalized by the corresponding average shedding period.

Because it is difficult to obtain the Strouhal number from the curves presented
above, a spectral analysis is performed to obtain this information. The small peak
in the power spectra of time series of drag coefficient at St = 0.012 for s/d = 2.0
(figure 12) is believed to correspond to secondary frequency. A Strouhal number of
0.22 corresponds to the primary shedding frequency, whereas the peaks at Strouhal
numbers of 0.44 and 0.88 are its harmonics.

Kim & Durbin (1988) presented the first statistical analysis of the time interval for
which the Cp value remains relatively high and the time for which it is relatively low
(s/d = 0.75). They showed that the time scale for transition from one value to the other
(referred to herein as the secondary period) was several orders of magnitude bigger
than the vortex-shedding period. The duration between transitions follows a Poisson
distribution and is therefore random. The average length of time between transitions
decreased with an increase in velocity. This is consistent with our observation of the
secondary period being one order of magnitude more than the primary period. Le Gal
et al. (1990) argue that the Reynolds number plays an important role in determining
the duration of flopping. The fundamental difference with Kim & Durbin (1988),
however, is that, in the present case, flopping is observed at a relatively high gap ratio –
possibly because of the larger number of cylinders, as noted earlier.
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Figure 12. Power spectra of drag coefficient signal, for a nine-cylinder row at s/d = 2.0 and
Re = 80. Power is in arbitrary units.

3.4. Chaotic flow (s/d � 1.0)

Although the vorticity contours in figure 13 appear to be qualitatively similar to that
at s/d = 2 (figure 10b) in that the shedding is not synchronized, important differences
exist between the two flow regimes. The small semblence that existed in the previous
regime is now fully lost. Unlike the previous regime, the vortices are not apparent even
immediately downstream of the cylinders, and some of the wakes appear substantially
narrower or wider than normal wakes. For example in figure 13(a), the wake behind
cylinder C1 is narrow and that behind C2 is wide and there is no formation of vortex
behind cylinder C2 at this instant. Note that the pattern of narrow and wide does
not alternate with respect to the cylinder number. The flow in gaps for this regime is
more like a jet.

These results are consistent with the experimental observation of Cheng & Moretti
(1988) that some of the wakes may be very wide. Ishigai & Nishikawa (1975) noted
that a vortex is formed only in the narrow wakes which also agrees with the present
results. The flow behaviour is again in qualitative agreement with the experimental
results of Bradshaw (1965) with circular cylinders at Re =1500 and similar spacing.
It was observed that the flow in the gap merges behind the cylinders and this
phenomena was termed as merging of jets by Bradshaw (1965). He reported that
merging of up to four jets can occur; although some evidence of this behaviour is
present at x/d ≈ 1 (figure 13a, b), it is not so apparent from the present simulations
as in the experiments. Presumably, the flow Reynolds number is too small in the
simulations to observe merging of jets. The streak-line photographs of Guillaume &
LaRue (1999) for three cylinders showing a relatively narrow and short wake behind
one of the cylinders and a relatively wide and long wake behind the other cylinders
are reproduced here in figure 14 for comparison and further discussion.

The most important difference in the time series of drag coefficient for s/d � 1
(figure 15) with respect to that at s/d = 2.0, is that the secondary shedding cycles are
no longer in anti-phase with respect to each other. The power spectra in figure 16 is
broad with little preference for a dominant frequency. The diffused peak at a Strouhal
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Figure 13. Vortex shedding from cylinders for (a) s/d = 1.0, and (b) s/d =0.30 (Re = 80).
The location of the cylinders is marked by a black square with a white outline.

number of 0.30 corresponds to the vortex-shedding frequency, while the peak at a
Strouhal number of 0.60 is its harmonic. Note the absence of a peak corresponding to
the secondary Strouhal number (in contrast to figure 12). These characteristics can be
used to further differentiate the chaotic regime with respect to the quasi-periodic-II
regime.

3.5. Summary of the various regimes

In the previous sections, definitions of various flow regimes were proposed. The
demarcation of the flow regimes is based on either vorticity or signal for drag
coefficient. The present simulations reveal the existence of a synchronized regime, two
quasi-periodic regimes, and a chaotic regime. In the synchronized regime, the vortex
shedding from any cylinder has a definite phase relationship with shedding from any
other cylinder at any given instant, after initial transients have died out. The period
of shedding from any cylinder is also the same for every primary (vortex-shedding)
cycle in this regime. The vortex-shedding period is, however, different for consecutive
cycles, even for the same cylinder in the quasi-periodic regimes. The primary cycle
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Figure 14. Flow visualization for three side-by-side circular-cylinders at s/d = 0.75 and Re =
4400, showing a wide wake behind the middle cylinder and narrow wakes behind the other
two cylinders (Guillaume & LaRue 1999).
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Figure 15. Signal of lift and drag coefficients for s/d = 1.0, Re = 80: (a) Cl1, Cl2 versus time,
and (b) Cd1, Cd2 versus time. Note that the time on the abscissa has been normalized by the
average shedding period.

can be clearly identified in the quasi-periodic-I regime, whereas the phase between
secondary cycles remains constant in both the quasi-periodic regimes. The reason for
the existence of the secondary cycle is discussed later. The flow in the last regime,
however, does not show orderly patterns and is therefore referred to as a chaotic
regime. Further justification for defining the regimes as above will be provided in § 6.2.
In the following, we review the various regimes proposed in the literature – most of
these studies are, however, for two circular cylinders.
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Figure 16. Power spectra of drag coefficient signal, for a nine-cylinder row at s/d = 1.0 and
Re = 80. Power is in arbitrary units.

The vortex shedding from a single cylinder is related to the spacing between the
shear layers and the thickness of the shear layer. On the other hand, a cylinder in
cross-flow is sometimes modelled as an oscillator, with vortex shedding being regarded
as its oscillations. The concept of an oscillator was extended by Peschard & Le Gal
(1996) to two side-by-side cylinders by introducing a coupling term in the Landau
model, with the amount of coupling dependent on the spacing between the cylinders
and the Reynolds number. A stability analysis of the resulting equations yielded
the following states: in-phase locking; asymmetric locking; quasi-periodic oscillation;
and antiphase locking. Ravoux et al. (2003) from an analysis of the lift and drag
coefficients on their numerical data for circular cylinders reported the existence of
two quasi-periodic regimes in addition to periodic and chaotic regimes.

The number of regimes identified here seems consistent with that mentioned in
the literature; their placement with respect to spacing is, however, different. The
difference is due to one or a combination of the following factors: difference in
geometry; Reynolds number; and the number of cylinders present in the flow.

4. Variation of integral parameters with spacing
The variation of flow parameters such as mean drag coefficient, shedding frequency

and phase difference between vortex shedding, with respect to gap ratio have been
summarized in this section. While the mean Cd and St provide information about the
type of interaction in different flow regimes, the phase difference relates the positions
of the vortices with respect to the cylinders and each other.

As can be seen from figure 17(a), the mean drag coefficient increases with a decrease
in s/d ratio. The increase is slow up to s/d =4, and picks up beyond it. The maximum
drag on the cylinders for the cases investigated can be up to 20 times more than
that for an isolated cylinder. It is reassuring that, for s/d > 10.0 the drag coefficient
asymptotes to 1.638, which is within 7% of the value of 1.533 for a single square
cylinder in the free stream (Sharma & Eswaran 2004). The value seems to match
that for a free-stream flow because each cylinder behaves as an isolated one at high
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out the trend clearly. In (a) and (b), the dashed line shows the corresponding value for flow
past a single square cylinder. In (c), the phase lag as determined from the data of Chauve &
Le Gal (1992) is also shown.

spacings. The relationship between mean Cd and s/d can be described by:

Cd = 1.53 − 1.30ξ + 6.60ξ 2 where ξ =
1

(s/d)0.67
. (9)

Equation (9) is chosen such that it gives the mean value of Cd for a single cylinder
when s/d → ∞. Note that (9) has the same functional form as that of mean Cd

with Reynolds number (see example Khan, Culham & Yovanovich 2005), with Re

replaced by s/d; the difference being that the exponent of s/d is 0.67 rather than 0.5.
The above functional form is found to work better than employing a higher-order
polynomial. Equation (9) has also been plotted in figure 17(a) and fits the computed
values to within 7 %.
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s/d f d/U0 Ugap/U0 f d/Ugap Uavg/U0 f d/Uavg

2.0 0.220 1.668 0.137 1.500 0.147
2.2 0.217 1.598 0.136 1.454 0.149
2.5 0.205 1.518 0.135 1.400 0.146
3.0 0.196 1.418 0.138 1.333 0.147
4.0 0.175 1.294 0.135 1.250 0.140
5.0 0.164 1.228 0.133 1.200 0.137
6.0 0.156 1.186 0.132 1.166 0.134
8.0 0.145 1.118 0.131 1.126 0.129

10.0 0.143 1.090 0.130 1.100 0.130
12.0 0.141 1.080 0.130 1.084 0.130

Table 5. Variation of Strouhal number based on uniform (U0), gap (Ugap) and average (Uavg)
velocities, as a function of spacing. The gap velocity corresponds to the time-average velocity
at the gap centre, obtained from the simulations. The average velocity is calculated by dividing
the incoming volume flux by the open area.

The Strouhal number ( = f d/U0 where f is the shedding frequency of the vortices)
is computed for each s/d ratio and is plotted in figure 17(b). The shedding frequency
is computed as half the inverse of the time difference between two consecutive maxima
in the time series of the drag coefficient; in regimes where the time series of drag
coefficient does not show a pattern, the most dominant frequency is obtained by a
spectral analysis of the drag signal. Figure 17(b) shows that the shedding frequency
decreases with an increase in spacing, and then remains constant at St = 0.14 for
s/d > 6. The relation between Strouhal number and spacing can be described by

St = 0.1275 +
0.1792

(s/d)
, (10)

which has the same functional form as that of Strouhal number versus Reynolds
number, proposed by Norberg (see Sohankar, Norberg & Davidson 1998) for a
single cylinder. Breuer et al. (2000) and Norberg (see Sohankar et al. 1997) found
St = 0.132, for flow past a single cylinder at a Reynolds number of 80, which compares
favourably (within 4 %) with the asymptotic value obtained at large spacings. The
spectral analysis reveals the presence of a secondary frequency in the flow for certain
spacings. The Strouhal number based on secondary frequency is almost constant at
0.01 (figure 17b).

It is obvious that the fluid velocity in the gap between the cylinders increases
with a reduction in spacing. Assuming that the detachment of vortices occurs at a
fixed distance (x/d ≈ 2.0) behind the cylinders (this seems to be justified for the first
three regimes from the vorticity plots presented earlier), a larger streamwise velocity
leads to a shortened time for detachment; hence, the shedding frequency increases.
Upon extending the above reasoning to s/d > 6.0 where the period of vortex shedding
remains constant, it can be argued that there is little interaction between fluid particles
passing over adjacent cylinders at these higher spacings.

To check the argument about the effect of gap velocity, we compute the modified
Strouhal number defined as f d/Ugap where Ugap is the time-average velocity at the
gap centre. Table 5 shows that the modified Strouhal number remains approximately
constant (variation of 5 %) for a large range of spacings (2.0 � s/d � 12.0). Further,
the symptotic value is in good agreement with the value for a single cylinder. This
shows that shedding is primarily affected by, and is proportional to, the average
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gap velocity. Note that in the modified Strouhal number the velocity scale has been
changed, but not the length scale. In fact, the Strouhal number defined as above
is more instructive than the Strouhal number defined as f s/Ugap (which can easily
be computed from data in the table) or f d/Uavg (table 5). However, redefining the
secondary Strouhal number based on a different velocity or length scales does not
reveal additional information, and is therefore not presented.

Figure 17(c) shows the variation in phase difference of vortex shedding between
adjoining cylinders with spacing in the synchronized and the quasi-periodic-I flow
regimes. The phase difference is calculated by examining the time signal for the lift
coefficient from adjoining cylinders, and only spacings where shedding from adjoining
cylinders is invariant with time are being reported. It can be seen from the figure
that for 3.0 � s/d � 5.0 the phase difference is close to 180o (implying that the vortex
shedding is approximately in the anti-phase mode); whereas at s/d = 6.0 (with phase
difference close to 0o) the vortex shedding is in the in-phase mode. Note that shedding
is not perfectly in-phase or anti-phase, only close to them. The presence of phase
lag in vortex shedding has not been reported in the literature, perhaps because of a
paucity of quantitative information noted above, although it is evident from the data
of Chauve & Le Gal (1992).

The mean Cd , St and flow pattern suggest different spacings when the interaction
between the cylinders ceases. Based on all the observations together, we believe that
when s/d � 6.0, the wakes behind cylinders interact whereas no significant interaction
takes place at larger spacings.

5. Vorticity dynamics
As seen in § 3.1, the instantaneous vorticity field reveals interesting patterns

(in-phase and anti-phase vortex shedding). In this section, we show that the
continuation of the pattern generated at the downstream end of the cylinders, should
be governed by the induction of velocity from the surrounding vortices on a given
vortex; the same should apply to stretching of vortices in the transverse direction.
The motion of vortices for the synchronized and quasi-periodic regimes are analysed
using vorticity dynamics in this section.

5.1. Synchronized and quasi-periodic-I regimes

Consider vortex 1 in figure 5(b): since the time period for shedding of consecutive
vortices is constant for s/d = 5.0 and the average convective velocity from the centre
of vortex 7 to the centre of vortex 1 is almost the same; therefore, vortices 7 and 10
should be equidistant from vortex 1, as is apparent from the figure. Further, as can
be seen from figure 18, the vortex strength is approximately constant for x/d > 5;
therefore, the strength of vortices 7 and 10 should be approximately the same. Because
of like signs, the induced velocity in the lateral direction computed using (7) of one
vortex at the centre of vortex 1 is approximately cancelled by the other. A similar
argument applies to vortex pairs 6, 9 and 5, 8, i.e. their effects on vortex 1 also cancel.
In fact, based on a similar argument, it is possible to generalize and say that, if the
cylinders are shedding vortices at a constant frequency, then irrespective of the phase
difference in vortex shedding, the effect of surrounding vortices on a given vortex
(all having the same sign) cancels out; this is apparent from the application of (7)
assuming vortices of approximately equal strength.

Now examining the effect of neighbouring vortices with opposite sign to the vortex
of interest: vortices 2 and 3 along with vortex 4 forms an equilateral triangle, with
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Figure 18. Variation in strength of vortices (in arbitrary units) with streamwise distance, at
s/d = 4.0 and Re = 80.

vortex 1 as the centroid (figure 5b). Note that the same configuration applies for
the next nearest neighbours, and so on. Therefore, again, application of (7) suggests
that the effect of all surrounding vortices cancels out and each vortex moves almost
parallel to the streamwise direction with little transverse movement or merging. We
will see in the next section that a small transverse motion which may remain from all
the cancelling effects mentioned above, is also important.

The above argument was confirmed by computing the velocity of each vortex
as a result of the influence of surrounding vortices at a given instant, and then
the streamwise velocity is superimposed over this induced velocity. It was further
found that the average transverse velocity as well as its fluctuations are almost zero
in the gap centreline region (Kumar 2006) for the entire range covered in these
simulations.

Note that the same argument works with smaller spacings as well (i.e. up to the
quasi-periodic-I regime). As seen in figure 17b, the shedding frequency increases with a
reduction in spacing, which implies a smaller distance between the successive vortices.
Similarly, owing to a reduction in spacing, the lateral distance between the vortices
also reduces. The relative position of vortices, however, remains unaffected and the
above argument applies.

5.2. Quasi-periodic-II regime

For the quasi-periodic-II regime, the vortices stretch in the transverse direction after
shedding and merge further downstream. These combined vortices tend to develop
a spread in the lateral direction with downstream distance and there is significant
movement of fluid particles across the gap centreline (figure 10). This observation
can be explained to some extent using the induced velocity argument discussed above
(Kumar 2006).

Williamson (1985) argues that in regimes where vortices from adjoining cylinders
merge, four regions can be identified when travelling downstream. In the region
closest to the cylinders, two parallel in-phase streets are formed. A transitory region
follows this, before the two separate wakes develop into a combined binary street.
Finally, the binary vortices coalesce into a single vortex. Our simulations support the
existence of all these regions for a large number of cylinders in the flow (see for
example figure 10).
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Figure 19. Difference in primary shedding cycle periods (iterations) of adjoining cylinders as
a function of primary cycle number, over a secondary cycle (s/d = 4.0, Re = 80, 1830 time
iterations correspond to a Strouhal number of 0.175). Owing to the periodic nature of the
secondary cycle, this difference is plotted over one secondary cycle only. Note that the difference
shows a sinusoidal variation implying that a longer primary cycle of one cylinder corresponds
to a shorter primary cycle of the adjoining cylinders.

6. Secondary (cylinder interaction) frequency
In this section, we explore the origin of the secondary frequency, discuss its

implication on the resulting flow, and bring about relevant observations from the
literature. It is proposed that the secondary frequency is due to a relatively narrow
wake behind one of the cylinders and a relatively wide wake behind the adjoining
cylinders; an interchange in the order of narrow and wide wakes with time takes
place, completing the cycle. The argument is first presented with respect to s/d = 4.0
and than generalized to other spacings.

6.1. Origin of secondary frequency

As is evident from table 4, a variation in primary period over a secondary cycle
occurs with s/d =4.0. This data along with the phase information in figure 17(c) can
be used to find the primary shedding cycle periods of cylinders. Figure 19 shows the
difference in primary periods of adjoining cylinders as a function of primary cycle
number, over a secondary cycle. The difference is sinusoidal, implying that a longer
primary cycle of one cylinder corresponds to a shorter primary cycle of the adjoining
cylinders, and vice versa. This difference leads to the formation of short and long
wakes, with a longer period correlating with a shorter wake. Figure 20(a) shows that
a smaller longitudinal position is correlated with a smaller lateral position (called
‘short and narrow’ wake), and vice-versa (‘long and wide’ wake). This is clear upon
examining the vortex pairs 1 and 5, 2 and 6, 3 and 7, and 4 and 8, which are on
opposite sides with respect to their cylinder centrelines, but their longitudinal and
lateral locations are different with respect to each other.

It turns out that the vortices corresponding to long wide wakes are faster moving
than their short narrow wake counterparts. Therefore, as the vortices move further
downstream, the vortices corresponding to long wakes move to still larger lateral
positions, i.e. the long wake widens further; on the other hand, the short wake
narrows further. This observation is supported by data in figure 19. This picture
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Figure 20. (a) The location of vortices centres, shed from cylinders C4, C5 and C6 at s/d = 4.0,
showing a relatively short and narrow wake behind cylinder C5 and relatively long and wide
wakes behind the other two cylinders. (b) The location of the centre of vortices shed from
cylinders C4, C5 and C6 at the end of a primary cycle, over one secondary cycle (s/d = 4.0,
Re = 80). The lines parallel to cylinders top and bottom surfaces are drawn to highlight the
transverse position of vortices centre as they move downstream.

applies untill further widening or narrowing is not possible, and then the wide
wake starts to narrow and the narrow wake starts to widen. The secondary period
corresponds to the time interval in which a narrow wake behind one cylinder becomes
wide and then narrows again.

To strengthen the above argument, the positions of vortices are followed over one
secondary cycle. Each curve in figure 20(b) comprises 18 data points representing the
position of vortex centres after each vortex-shedding (primary) cycle. It is evident that
the positions of vortex centres do not coincide, as they should if only one (primary)
cycle were present; rather, they form closed loops, highlighting the presence of another
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(secondary) frequency. In particular, just behind the cylinders (x/d � 5), the wakes
primarily transit between short and long wakes, because the vortex positions scan a
straight line parallel to the streamwise direction. Subsequently, the vortex positions
scan a line at an angle with respect to the streamwise coordinate, representing both
long wide and short narrow wakes. These observations are in accord with the above
argument of long (short) wakes (because of variation in the primary cycle) leading to
long wide (short narrow) wakes and the appearance of a secondary cycle.

Further credence to the proposition on the origin of the secondary frequency is
obtained by examining both vorticity and pressure fields at the same instant. A long
wake behind a cylinder corresponds to a relatively high pressure downstream of that
cylinder. As the pressure force is the major constituent of the overall drag force
(about 90 % at this Reynolds number and spacing), the drag coefficient is small in the
case of a long wake. Conversely, a short wake downstream of a cylinder corresponds
to a lower downstream pressure, and a larger drag force. As already discussed, the
secondary signals from adjacent cylinders are in anti-phase (figure 8b), which means
that whenever a narrow wake is formed behind one cylinder, a wide wake is formed
behind its two neighbours, and vice versa, leading to alternatively high and low values
of the drag coefficient. Note that Guillaume & LaRue (1999) also observed anti-phase
flopping for three side-by-side circular cylinders (figure 14).

6.2. Discussion on secondary frequency

Three points on secondary frequency are worth noting. First, the secondary
frequency makes an increasingly dominant contribution to the Cd signal with a
reduction in spacing. For example, at s/d = 5.0, there is no apparent component of
secondary frequency in the drag coefficient; the amplitude of the drag coefficient
(of approximately 0.03) is brought about by the primary (vortex shedding) cycle. (For
comparison, the amplitude of Cd for a single cylinder is about 0.01 with a mean of
1.533.) At s/d = 4.0 and 3.0, the drag coefficient varies by 0.33 and 0.64, respectively,
i.e. about 11 and 21 times the primary shedding amplitude at large spacings. A further
increase in the amplitude of drag coefficient to 0.80 and 0.96 at s/d =2.2 and 2.0
is also due to the secondary frequency. Owing to correlation and proportionality
between the secondary frequency and cylinder spacing, we propose that the secondary
frequency is a new component brought about by the interaction of the wakes. The
secondary frequency can therefore also be regarded as cylinder interaction frequency.

Secondly, the secondary frequency affects even the primary frequency, as seen by
the variation in primary cycle over one secondary cycle. That is, although it is argued
in § 6.1 that variations in the primary cycle lead to a secondary cycle, the cause-and-
effect cannot really be determined. As noted in table 4, the cycle-to-cycle variation in
period increases with a decrease in spacing (4 % at s/d = 4.0 and 10% at s/d = 3.0);
also the number of primary cycles encompassed in a secondary cycle increases with
spacing (from 17 cycles at s/d = 4.0 to 21 cycles at s/d = 3.0). Extending it further,
we believe that at smaller spacings the cycle-to-cycle variation in period becomes so
large that the primary cycle itself loses meaning (the minimum fluctuations in Cd at
s/d = 4.0, 2.2 and 2.0 are approximately 0.04, 0.02 and 0.01, respectively). That is,
the shedding of vortices becomes irregular, leading to a choatic regime, as observed
for s/d � 1.0 in these computations. All the regimes can therefore be construed as
an interplay between the two (primary and secondary) cycles: only the primary cycle
is important in the synchronized regime (figure 6). When both are of comparable
magnitude, the two frequencies lead to quasi-periodic regimes. Further, in the quasi-
periodic-I regime, the primary cycle is stronger than the secondary (figure 8) whereas
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the secondary dominates in the quasi-periodic-II regime (figure 11). Finally, when the
secondary frequency overwhelms the primary, a chaotic regime results (figure 15).

Thirdly, we believe that the connection between wake lengths and frequencies in
the flow has not been clearly elucidated in the literature. The interaction of the two
frequencies, as proposed here, can act as a unifying agent for the various (sometimes
contradictory) results in the literature.

7. Conclusions
A numerical study of flow around a row of square cylinders placed side-by-side

has been carried out using the two-dimensional lattice-Boltzmann method at different
separation ratios (s/d = 0.3–12) and a Reynolds number of 80. The focus has been
to understand the flow physics as revealed by these detailed computations. Based on
the variation of mean drag coefficient and shedding period with respect to spacing,
it is concluded that when s/d � 6.0, the wakes behind cylinders interact, resulting in
a variety of flow patterns. At larger spacings, no significant interaction between the
wakes is observed. The mean drag coefficient and shedding frequency are about 7 %
higher than for an isolated cylinder at larger spacings, but becomes drastically more
with a reduction in spacing. The variation of shedding period with respect to gap
ratios also reveals that shedding is primarily affected by, and is proportional to, the
average gap velocity for 2.0 � s/d � 12.0.

It is found that synchronized vortex shedding takes place for s/d � 5.0, whereby
vortices shed from any cylinder are at constant frequency and have a definite phase
relationship with vortices shedding from other cylinders. Consequently, there is only
one frequency in the time signal corresponding to the shedding cycle, and no transverse
movement of vortices takes place. For 3.0 � s/d � 4.0, shedding from one cylinder
shows a definite phase relationship with shedding from other cylinders, but the
shedding period is not constant; the time signal for this regime also shows a second
frequency. The time period corresponding to secondary frequency is an order of
magnitude larger than the vortex-shedding period; the secondary frequency is believed
to correspond to narrow and wide wakes. It is shown that the secondary frequency
makes a dominating contribution to Cd and its contribution increases with a decrease
in spacing (about 11 and 21 times compared to large spacings for s/d = 4.0 and 3.0,
respectively). Relatively low shedding period and large drag coefficient corresponds
to a short wake and higher periods, and small drag coefficient corresponds to long
wake. Consecutive cylinders are in anti-phase with respect to the secondary frequency.

Another quasi-periodic regime occurs for 1.0 <s/d < 3.0 where there is no definite
pattern of vortex shedding from a cylinder as well as between shedding from adjacent
cylinders. A secondary cycle can be identified in this regime also from a pronounced
effect on drag force, so much that the effect of shedding frequency on drag coefficient
becomes negligibly small at smaller s/d and fluctuations observed are mainly due to
the secondary frequency. At s/d � 1.0, there is no semblence in the flow. It is argued
that the different flow regimes can be explained based on interaction between vortex
shedding and cylinder interaction frequencies. Some essential features of the various
regimes have been summarized in table 6.

The flow patterns observed in the different flow regimes have been explained on
the basis of vorticity interaction. For s/d � 3.0, the vortices are distinct and clearly
apparent without significant lateral spread. There is not much movement of fluid
across the gap centreline. At s/d � 2.2, the vortices stretch in the transverse direction
after shedding and merge further downstream to form a single vortex. There is
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Spacing Observation Regime

s/d � 8 No significant interaction
s/d =6 Interaction manifests with cylinders shedding Synchronized

vortices in-phase with a phase lag
s/d =5 Phase lag increases to about 180o leading to a Synchronized

transition from in-phase to anti-phase shedding
s/d =4 Secondary frequency appears due to a lateral movement Quasi-periodic-I

of vortices (cancellation of induced velocity from
the surrounding vortices is no longer perfect)

s/d =3 Substantial lateral movement of vortices Quasi-periodic-II
(and below)

s/d < 1 Secondary frequency overwhelms the primary frequency; Chaotic regime
no clear peak in the spectrum unlike above regimes

Table 6. Summary of the various flow regimes at Re = 80. Note that the regime boundaries
are not well resolved, and therefore the spacing demarcating the different regimes is only
approximate.

significant movement of fluid particles across the gap centreline at lower spacings.
These results are expected to be important both fundamentally and for some of the
applications identified above.

We are grateful to Mr C. M. Sewatkar for the computations in § 2.5 and for
independently verifying some of the results presented herein. The financial support of
the Department of Science and Technology, New Delhi is acknowledged.
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